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Computer-Aided Design Models for
Broadside-Coupled Striplines and

Millimeter-Wave Suspended
Substrate Microstrip Lines

PRAKASH BHARTIA, SENIORMEMBER,IEEE,ANDPROTAP PRAMANICK, MEMBER,IEEE

Abstract —Thk paper presents computer-aided design models for broad-

side-coupled stiplines aud suspeuded subsirate microstrip lines. The mod-

els have beeu obtained from the results of conformaf transformation on
homogeneous stripline, the equivalence of the odd-mode with the quasi-

TEIW mode of covered microstrip line, and logarithmic regression of

spectral-domain results. The models can take the effects of finite strip
thickness into accouut. The present models will be vital to the CAD of
microwave aud milfimeter-wave filters, couplers, dc blocks, aud various

other circuits.

I. INTRODUCTION

c

OUPLEIl LINES are extensively used as basic build-

ing blocks for passive and active components, such as

directional couplers, filters, baluns, and digital phase shifter

networks. Coupled lines in a homogeneous medium have

equal even- and odd-mode phase velocities. But velocities

are different if the medium happens to be inhomogeneous.

A broadside-coupled stripline has a homogeneous config-

uration, (See Fig. 1, c1 = t ~ = Cr), whereas broadside-cou-

pled suspended microstrip (See Fig. 1, C2 = 1, El= ~, > 1)

and inverted microstrip (See Fig. 1, Cl =1, c* = C, > 1) have

inhomogeneous configuration. As a result, the even- and

odd-mode phase velocities are different.

Broadside-coupled stripline has been analyzed by Cohn

[1] using conformal transformation of the geometry of the

structure. Cohn’s procedure requires the solution of a

transcendental equation, and explicit design formulas are

obtained using Gunderson and Guida’s [2] relationships

for the even- and odd-mode fringe capacitances together

with Cohn’s analysis, when W/b >0.35.
There have been numerous methods for the solution of

multiple boundary value problems involving more than
one dielectric medium in planar transmission lines. Exam-
ples are the conformal mapping method [3], the integral
equation method [4], [5], the relaxation method [6], the
variational method [7], [8], [19] and the method of mo-
ments [9]. An excellent account of the relative merits and
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demerits of the methods has been presented in the article
on the discrete variational conformal technique by Diaz
[10].

Although the above methods are rigorous and ade-
quately accurate, each of them requires considerable
analytical effort and leads to complicated computer pro-
gramming. Therefore, from the standpoint of fast and cost-
effective computer-aided design of planar integrated cir-
cuits there remains a strong need for simple but accurate
models for the electrical characteristics of broadside-cou-
pled striplines and microstrip lines.

In the present work we have developed such models
using the results of conformal transformation of homoge-
neous broadside-coupled lines, the analogy of the odd-
mode configuration with a shielded microstrip line, and
the logarithmic regression of spectral-domain results.

II. THEORY

A. Broadside-Coupled Stripline

Fig. l(a) and (b) shows the even- and the odd-mode field
distributions, respectively, of a broadside-coupled planar
transmission line having two different substrate layers. For
c1= C2= Cr, the structure reduces to a strip transmission
line. According to Cohn [1] the characteristic impedances
2., and ZOOof the even mode and the odd mode of the
structureare given by

and

la)

lb)

where k is the solution of the following transcendental
equation:

and K is the complete elliptic function of the first kind,
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Fig. 1. General structure of broadside-coupled microstnp line. (a)
Even-mode field distribution. (b) Odd-mode field distribution.

k’=il– k2, with

‘=l(kw(+) “b)
The results given by the above equations are claimed to be
virtually exact for W/S >0.35. However, an explicit solu-
tion of (1) can be obtained as follows:

The odd-mode field distribution (Fig. l(b)) has the same
field distribution as in a shielded microstrip line. There-
fore, suitably modifying the equations in [11], we can write

Zoo& =z;. – AZ;. (3)

where, <,0 is the odd-mode effective dielectric constant,
and

‘qo=1207rQ

\P.Q. for W/S > 1/2

and

rM0.48 :–1

Q=l–tanh-l
b–S 2 “

()
l+—

s

(4)

Once ZoO& has been obtained, combining (2b) and (3)
gives

H293.9 S/b
k = tanh —= .

-%obr
(5)

Using (5) in (la), we obtain Zo..
Hillberg’s [12] accurate approximation gives

()K(k) ;In ‘l+fi

K(k’) = r l–g ‘
0.5< k2<l (6a)

lr

=:

()l+fl ‘
0< k2 <0.5. (6b)

in 2—
l–m

The above equations are valid also for W/b <0.35, and
offer an accuracy within 1 percent of spectral-domain
results.

B. Broadside-Coupled Suspended Microstrip line (C1= c, >
1, 62=1)

The even- and the odd-mode characteristic impedances
of broadside-coupled suspended microstrip lines are given
by

Z;e=z;e/@ (7a)

and

Z:.= z&/fi: . (7b)

Z& and Z;O are the even- and odd-mode characteristic
impedance of the corresponding air-filled homogeneous
broadside-coupled striplines, and c:,, and ~~0are the even-
and the odd-mode effective dielectric constant of the inho-
mogeneous broadside-coupled line, Z;= and Z& are ob-
tained from (la) and (3) respective] y.

From the analogy of the odd-mode field distribution
with that in a covered microstrip line, we obtain the
odd-mode effective dielectric constant by appropriately
modifying Marcl-ts [11] and Hammcrstad’s [13] expressions
as

c:.=:( %+1) +9( ’’,-1)/2

where the filling factor q is given by

4 = (7Ac

()
—a(U) b(c, )

qm= l+;

(U4 + (U/52)2
a(U) =l+~ln

U4 i- .432 )

+1:.7 { ( ))

1 U3
—ln 1+ —

18.1

u= ‘w/s

{}

<r – 0.9 0’053
b(~,) =0.564 ~

r

(8)

(9a)

(9b)

(9C)

(9d)

(9e)
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Fig. 2. Derived configuration of broadside-coupled striphnes for (a)
anisotroplc case and (b) isotropic case.

and -

(
qC= tanh 1.043+0.121

(%11’4(A))
(9f)

The even-mode effective dielectric constant is obtained
from the logarithmic regression of spectral-domain results
as

where

al= {0.8145 –0.058241n(S/b)}s (11)

b,= {0.7581 -0.071431n(S/b)}8. (12)

The above equations offer an accuracy of 1 percent when
compared with results from the variational method in the
Fourier transform domain [19] for c.< 16, S/b <0.4, and
W/b <1.2. These conditions are mostly met in practice.

C. Broadside-Coupled Suspended Microstrip on Anisotropic
Substrate.

Some anisotropicsubstratematerials,such as random

fiberPTFE, pyrolytic boron nitride, sapphire, and epsilam
10, show certain advantages over ceramics, which include
lower losses, higher homogeneity, and lower variation of
electrical properties from batch to batch. Such anisotropic
materials are often used in designing suspended microstrip
broadside couplers. The relative permittivity tensor for
such a material can be written as

[1
cxx1 cXyl o

i, = Cxyl Cyyt o . (13)

00 6ZZ;

Fig. 2(a) shows the configurationof a broadside-coupled

suspended microstrip,on an anisotropicsubstrate,with

electricand magnetic wallsat the lineof symmetry. Using

Szentkuti’s[15] transformation gives the corresponding

equivalentisotropicstructureas shown in Fig.2(b).Here
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present models. (a) Characteristic impedance. (b) Effective dielectric
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d=,b-S)/= (14b)

and
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constant c, =10.00.

TABLE I

Once the equivalent isotropic structure has been obtained,
(1) through (13) can be used to compute the effective
dielectric constant and the characteristic impedance of the
anisotropic line within 1 percent of the variational method
in Fourier transform domain results [16] as long as d > S’.

III. COMPUTEDRESULTS

Pictorial representations of the models presented in this
article are given in Figs. 3, 4, and 5 for the three most
commonly used commercially available substrates, poly-
olefin (c, G 2.32), alumina (c. E 10), and epsilam 10 (6XX=
c,, = 15, CYy= 10, 6TY= 6YX= O). These are included as an
immediate design wd and as a reference for the installation
of the formulas on a computer. A better appreciation of
the above models can be obtained from Table I.

E;0.10.2
0.4
0.6
0.8
1.0

‘r - 2.32,~= 0.1
b

REF f14] Present Mode 1s REF [8] I

274.00 63.30 I 273.20 63.80 I 280 64.5 I

232.7o 40.50 232.20 40.90 235 41.5
182.20 24.00 181.06 23.93 18’0 24.4
152,50 17.00 150.00 16.95 150 16.8
130.10 13.50 128.00 13.62 \ 128 13.2

112.99 10.70 -

IV. EF~ECTS OF FINITE Srrw THICKNESS

The derivationsof the above models assume a zero strip

thinkness.Such an assumption isvalidfor many practical

applicationsof broadside-coupledstriplinesand microstrip

lines.However, in many other ap placations,a finitestrip
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thickness has to be taken into consideration. Qualitatively
speaking, the effect of finite strip thickness t on the
effective dielectric constant is roughly within t 0.8 percent
for all substrate materials used for millimeter-wave appli-
cations [19], i.e., Duroid or fused quartz, and t/b< 0.02,
although this upper bound on t/b is rarely encountered in
practice. But for c,= 10, the effect of finite strip thickness
can be as high as 1.5 percent on the even-mode effective
dielectric constant and 0.75 percent oh the odd-mode
effective dielectric constant [19]. On the other hand, the
error in the odd-mode characteristic impedance can be on
the order of 4 percent and the error in even-mode imped-
ance, 2 percent [19]. Based on these observations the
following corrections are proposed.

1) Correction for the Effective Dielectric Constant in Odd
Mode: Replace q~ by (qm – q,) k (9b) and compute the
correct c:;, where

q,= (’v”)(t/s)/@m. (15)

2) Correction for the Even-Mode Effective Dielectric Con-
stant: The correct even-mode effective dielectric constant
with finite strip thickness is given by

(16)

The odd-mode characteristic impedance Z&of the air-filled
broadside-coupled line with finite strip thickness can be
written as [18]

noz;; =
Cpl+ CP2+ Cfl + cf2

q~=12077 !2.

For 2W/(b – t) >0.35,

4w/(b–8)
Cpl E

1- (b~8)

4W/(b’+ 8)
c,, = 8= b/2– S

1- (b;~)

(17)

(18a)

(18b)

1

(

2

(

1

cf’=~ l–t/(b–8)1n l–t/(b–8) ‘1 )

( 1

)“(

1
—

l–t/(b–8) ‘1 In (1–t/(b–8))2–1 )1
(18c)

1

(

2

(

1

cfz=~ l–t(b+8)1n l–t/(b +8) ‘1 1

-(

1

H

1

))l–r/(b+8)–1 In (1–t/(b+b))2–1 “

(18d)

For 0.1< 2W/(b – t) <0.35, replace W/b in the above

expressions by [18]

W. (0.07(1 - l/b) +2W/b)

b= 2.4
(19)

The odd-mode characteristic impedance of broadside-
coupled suspended microstrip is given by

(20)

The even-mode characteristic impedance with finite strip
thickness is given by

(21)

V. CONCLUSIONS

Simple expressions have been reported for the even- and
odd-mode effective dielectric constants and characteristic
impedances of broadside-coupled striplines and suspended
substrate microstrip lines. The equations have been derived
from the conformal mapping results of homogeneous
striplines, the equivalence of the odd-mode with the covered
microstrip mode, and the logarithmic regression of spec-
tral-domain results. Effects of finite strip thickness have
been taken into account. The models represent a consider-
able improvement in the broadside-coupled stripline and
microstrip line filter and coupler designs and are fully
compatible with the needs and trends of computer-aided
and programmable-calculator-aided microwave and milli-
meter-wave integrated circuit design.
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