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Computer-Aided Design Models for
Broadside-Coupled Striplines and
Millimeter-Wave Suspended
Substrate Microstrip Lines

PRAKASH BHARTIA, SENIOR MEMBER, IEEE, AND PROTAP PRAMANICK, MEMBER, IEEE

Abstract —This paper presents computer-aided design models for broad-
side-coupled striplines and suspended substrate microstrip lines. The mod-
els have been obtained from the results of conformal transformation on
homogeneous stripline, the equivalence of the odd-mode with the quasi-
TEM mode of covered microstrip line, and logarithmic regression of
spectral-domain results. The models can take the effects of finite strip
thickness into account. The present models will be vital to the CAD of
microwave and millimeter-wave filters, couplers, dc blocks, and various
other circuits.

1. INTRODUCTION

OUPLED LINES are extensively used as basic build-

ing blocks for passive and active components, such as
directional couplers, filters, baluns, and digital phase shifter
networks. Coupled lines in a homogeneous medium have
equal even- and odd-mode phase velocities. But velocities
are different if the medium happens to be inhomogeneous.
A broadside-coupled stripline has a homogeneous config-
uration, (See Fig. 1, ¢, = ¢, =¢,), whereas broadside-cou-
pled suspended microstrip (See Fig. 1, e,=1, ¢;=¢,>1)
and inverted microstrip (See Fig. 1, ¢, =1, €, =€, > 1) have
inhomogeneous configuration. As a result, the even- and
odd-mode phase velocities are different.

Broadside-coupled stripline has been analyzed by Cohn
[1] using conformal transformation of the geometry of the
structure. Cohn’s procedure requires the solution of a
transcendental equation, and explicit design formulas are
obtained using Gunderson and Guida’s [2] relationships
for the even- and odd-mode fringe capacitances together
with Cohn’s analysis, when W/b > 0.35.

There have been numerous methods for the solution of
multiple boundary value problems involving more than
one dielectric medium in planar transmission lines. Exam-
ples are the conformal mapping method [3], the integral
equation method [4], [5], the relaxation method [6], the
variational method [7], [8], [19] and the method of mo-
ments [9]. An excellent account of the relative merits and
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demerits of the methods has been presented in the article
on the discrete variational conformal technique by Diaz
[10].

Although the above methods are rigorous and ade-
quately accurate, each of them requires considerable
analytical effort and leads to complicated computer pro-
gramming. Therefore, from the standpoint of fast and cost-
effective computer-aided design of planar integrated cir-
cuits there remains a strong need for simple but accurate
models for the electrical characteristics of broadside-cou-
pled striplines and microstrip lines.

In the present work we have developed such models
using the results of conformal transformation of homoge-
neous broadside-coupled lines, the analogy of the odd-
mode configuration with a shielded microstrip line, and
the logarithmic regression of spectral-domain results.

II. THEORY
A. Broadside-Coupled Stripline

Fig. 1(a) and (b) shows the even- and the odd-mode field
distributions, respectively, of a broadside-coupled planar
transmission line having two different substrate layers. For
€, =€, =¢,, the structure reduces to a strip transmission
line. According to Cohn [1] the characteristic impedances
Zy, and Z;, of the even mode and the odd mode of the
structure are given by

607 K(k')

Zy, s Kk | (1a)

and
293.958/b
ZOo RS TZTEY
Je, tanh =1 (k)
where k is the solution of the following transcendental

equation:
1 1+R\ S [1+R/k
W/b=—{ln( )——11‘1 m)} (23)

(1b)

T 1-R b

and K is the complete elliptic function of the first kind,
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Fig. 1. General structure of broadside-coupled microstrip line. (a)

Even-mode field distribution. (b) Odd-mode field distribution.

k'=V1-k?, with

(2b)

The results given by the above equations are claimed to be
virtually exact for W/S > 0.35. However, an explicit solu-
tion of (1) can be obtained as follows:

The odd-mode field distribution (Fig. 1(b)) has the same
field distribution as in a shielded microstrip line. There-
fore, suitably modifying the equations in [11], we can write

Zoglec, = Zioe — AZS, (3)

where, ¢,, is the odd-mode effective dielectric constant,

and
. 0 38 S\? )
= —+\ (=] +
N (W
10 =12078
w 1
AZ(()IOO_ fOI’"S—<5'
P.Q. for W/S=1/2
b—S
P=270{1—tanh 0.28+1.2 T)}
and
2w
0.48 —S——l
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Once ZOO‘/; has been obtained, combining (2b) and (3)
gives

293.95/b
i/—}. (5)

k = tanh =
{ ZOo\%Er
Using (5) in (1a), we obtain Z,,.
Hillberg’s [12] accurate approximation gives

K(k) _1 21+‘/E 05<k?<l (6
== ' IVEN S
K(x) 7 \“1-v& |’ <1 (6a)

T
S — <k%<0.5.
1 21+\/k—’ , 0<k?<0 (6b)
N1k

The above equations are valid also for W/b < 0.35, and
offer an accuracy within 1 percent of spectral-domain
results,

B. Broadside-Coupled Suspended Microstrip line (e;=¢, >
1, ¢,=1)

The even- and the odd-mode characteristic impedances
of broadside-coupled suspended microstrip lines are given
by

Z5.=Z8 /e, (7a)

and

Z30= 25,/ \eis (7b)
Z¢, and Z¢, are the even- and odd-mode characteristic
impedance of the corresponding air-filled homogeneous
broadside-coupled striplines, and ¢!, and ¢, are the even-
and the odd-mode effective dielectric constant of the inho-
mogeneous broadside-coupled line. Z§, and Z§, are ob-
tained from (1a) and (3) respectively.

From the analogy of the odd-mode field distribution
with that in a covered microstrip line, we obtain the
odd-mode effective dielectric constant by appropriately
modifying March’s [11] and Hammerstad’s [13] expressions
as

1
et =3 (e + 1)+ (e, ~1)2 ®

where the filling factor ¢ is given by

q=4.9. (9a)
55 —a(U)b(e,)
=14+ — 9b
9o ( W) (9b)
1 U4 +(U/52)
a(U)—1+Eln{—~—————U4+.432 }
Lonlie[ L 3 (9¢)
JRE— + PR
METY A (18.1) ©
U=2W/S (9d)
€ ___09 0.053
=0.564{ —— 9
b(e,) =0.56 { -y } (%)
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The even-mode effective dielectric constant is obtained
from the logarithmic regression of spectral-domain results 24
as
S w | —" o Sx
<§e={1+; al—blln(j))(\/g—l)} (10) o e,
B /X
where IPRRT SV L S
w e
a, = {0.8145-0.058241n(S/b)}* an T =23
by = {0.7581-0.07143In(S/b)}". (12) 1af / 02
. \x 885 s

The above equations offer an accuracy of 1 percent when k] — cce

. . . \X x\x:x\x
compared with results from the variational method in the — — — e ——————
Fourier transform domain [19] for €, <16, S/b < 0.4, and o os o8 1o 12 1s 18 18 20
W/b <1.2. These conditions are mostly met in practice. wib

(b

C. Broadside-Coupled Suspended Microstrip on Anisotropic  Fig. 3. Comparison with spectral-domain results. [19]; X X X
Substrate. present models. (a) Characteristic impedance. (b) Effective dielectric

. . . constants €, = 2.32.
Some anisotropic substrate materials, such as random

fiber PTFE, pyrolytic boron nitride, sapphire, and epsilam

10, show certain advantages over ceramics, which include

lower losses, higher homogeneity, and lower variation of

electrical properties from batch to batch. Such anisotropic S'=
materials are often used in designing suspended microstrip

broadside couplers. The relative permittivity tensor for

such a material can be written as

€,=|¢ € 0 |. (13)
0 0 e, and

Fig. 2(a) shows the configuration of a broadside-coupled ,
suspended microstrip, on an anisotropic substrate, with €17 Y€y T
electric and magnetic walls at the line of symmetry. Using
Szentkuti’s [15] transformation gives the corresponding

2
- . . - . €,5 =1/€ € — €., -
equivalent isotropic structure as shown in Fig. 2(b). Here r2 Xx2°yy2 - xy2
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Fig. 4. Comparison with spectral-domain results. [19]; XXX

present models. (a) Characteristic impedance. (b) Effective dielectric
constant ¢, =10.00.

Once the equivalent isotropic structure has been obtained,
(1) through (13) can be used to compute the effective
dielectric constant and the characteristic impedance of the
anisotropic line within 1 percent of the variational method
in Fourier transform domain results {16] as long as d > S".

III. CoMmPUTED RESULTS

Pictorial representations of the models presented in this
article are given in Figs. 3, 4, and 5 for the three most
commonly used commercially available substrates, poly-
olefin (¢, = 2.32), alumina (e, =10), and epsilam 10 (e, =
€..=15 ¢,,=10, €,, =€, =0). These are included as an
immediate design aid and as a reference for the installation
of the formulas on a computer. A better appreciation of
the above models can be obtained from Table 1.
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present models. (a) Characteristic impedance. (b) Effective dielectric

i

constant epsilam 10 substrate (e, =€, =15, €,, =10, €,, =¢,, =¢,,
=€, = 0).
TABLE I
e = 2.32, 8= 0.1
b
REF [14) Present Models REF [8]
W s s s s s s
v Zoe Zoo Zoe Zoo Zoe Zoo
0.1 274.00 63.30 273.20  63.80 280 64.5
0.2 232.70 40.50 232.20  40.90 235 41.5
0.4 182.20 24,00 181.06  23.93 180 2.4
0.6 152.50 17.00 150.00  16.95 150 16.8
0.8 130.10 13.50 128.00  13.62 . | 128 13,2
1.0 - - 112.99  10.70 - -

1V. Errects oF FINITE STRIP THICKNESS

The derivations of the above models assume a zero strip
thinkness. Such an assumption is valid for many practical
applications of broadside-coupled striplines and microstrip
lines. However, in many other applications, a finite strip
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thickness has to be taken into consideration. Qualitatively
speaking, the effect of finite strip thickness ¢ on the
effective dielectric constant is roughly within + 0.8 percent
for all substrate materials used for millimeter-wave appli-
cations [19], i.e., Duroid or fused quartz, and ¢/b < 0.02,
although this upper bound on ¢ /b is rarely encountered in
practice. But for €, =10, the effect of finite strip thickness
can be as high as 1.5 percent on the even-mode effective
dielectric constant and 0.75 percent on the odd-mode
effective dielectric constant [19]. On the other hand, the
error in the odd-mode characteristic impedance can be on
the order of 4 percent and the error in even-mode imped-
ance, 2 percent [19]. Based on these observations the
following corrections are proposed.

1) Correction for the Effective Dielectric Constant in Odd
Mode: Replace g, by (¢, —¢,) in (9b) and compute the
correct €5, where

eo’
q,=2/7)(t/S)/V2W/S . (15)
2) Correction for the Even-Mode Effective Dielectric Con-
stant: The correct even-mode effective dielectric constant
with finite strip thickness is given by
s, = ez,
1+2 —

680

st o s
688 Eee

(16)

The odd-mode characteristic impedance Z§, of the air-filled
broadside-coupled line with finite strip thickness can be
written as [18]

Mo

Z3,= Cy+Cpy+Cy+Cp ()
1o = 1207 Q.
For 2W /(b —1t) » 0.35,
= 4W/(bt 8) (18)
BRCED)
pz=w’ d=b/2—8 (18b)
EUED)
1 2 1
Cﬂ:;{1—t/(b-—3)1n(1—f/(b_8)+1
1 , 1
e R frerrrerrt]
(18¢)
1 2 1
Cf2=5{1—t(b+a) 1“(1—t/(b+8) +1)

1
1|n| —————-1];.
) (0—v@+®f )}
(184)

For 0.1<2W/(b—1t)<0.35, replace W/b in the above

1
_(1—t/(b+8)_
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expressions by [18]
W, (0.07(1—t/b)+2W/b)

n

b 2.4 (19)

The odd-mode characteristic impedance of broadside-
coupled suspended microstrip is given by

Zoo=Z35/ V%0 - (20)
The even-mode characteristic impedance with finite strip
thickness is given by

(21)

1 Z5,— Zg,
2z, |

V. CONCLUSIONS

Simple expressions have been reported for the even- and
odd-mode effective dielectric constants and characteristic
impedances of broadside-coupled striplines and suspended
substrate microstrip lines. The equations have been derived
from the conformal mapping results of homogeneous
striplines, the equivalence of the odd-mode with the covered
microstrip mode, and the logarithmic regression of spec-
tral-domain results. Effects of finite strip thickness have
been taken into account. The models represent a consider-
able improvement in the broadside-coupled stripline and
microstrip line filter and coupler designs and are fully
compatible with the needs and trends of computer-aided
and programmable-calculator-aided microwave and milli-
meter-wave integrated circuit design.
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